Литература Русский язык Английский язык Математика Информатика Физика Химия Биология География История
гдз

Геометрия (240)

На диагонали AC квадрата ABCD взята точка M, причём AM = AB. Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что BH = HM = MC. Решение:Треугольник HMC — прямоугольный и равнобедренный (т.к.…
Боковая сторона трапеции равна одному основанию и вдвое меньше другого. Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции. Решение Пусть E — середина большего основания AD трапеции ABCD, в которой AB = BC = ? AD. Тогда ABCE — параллелограмм,…
Стороны параллелограмма равны 8 и 3; биссектрисы двух углов параллелограмма, прилежащих к большей стороне, делят противолежащую сторону на 3 части. Найдите каждую из них. Решение:Пусть BK и CM — биссектрисы углов B и C параллелограмма ABCD, в котором AD =…
В параллелограмме ABCD известны диагонали AC = 15, BD = 9. Радиус окружности, описанной около треугольника ADC, равен 10. Найдите радиус окружности, описанной около треугольника ABD. Решение: Пусть R = 10 — радиус описанной окружности треугольника ADC. Ответ: 6. Источники:…
В параллелограмме ABCD большая сторона AD равна 5. Биссектрисы углов A и B пересекаются в точке M. Найдите площадь параллелограмма, если BM = 2, а Решение:
У четырёхугольника диагонали равны a и b. Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного. Решение:Пусть ABCD — данный четырёхугольник; AC = a, BD = b; M, N, K и L — середины его сторон AB, BC, CD и…
В четырёхугольнике ABCD диагональ AC делит другую диагональ пополам и BC + CD = AB + AD. Докажите, что ABCD — параллелограмм. РешениеПусть M — середина диагонали BD. Если AM = CM, то ABCD — параллелограмм. Предположим, что AM > CM.…
На диагонали AC квадрата ABCD взята точка M, причём AM = AB. Через точку M проведена прямая, перпендикулярная прямой AC и пересекающая BC в точке H. Докажите, что BH = HM = MC. Решение:Треугольник HMC — прямоугольный и равнобедренный (т.к. <…
Угол при вершине A ромба ABCD равен 60o. На сторонах AB и BC взяты соответственно точки M и N, причём AM = BN. Докажите, что треугольник MDN — равносторонний. РешениеПри повороте на 60o по часовой стрелке вокруг точки D вершина…
Страница 16 из 24