Литература Русский язык Английский язык Математика Информатика Физика Химия Биология География История
гдз
Авторизация

Геометрия (240)

Сторона BC параллелограмма ABCD вдвое больше стороны AB. Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Найдите стороны параллелограмма. Решение: Пусть биссектриса угла A пересекает сторону BC в точке P, прямую…
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника. Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d. Решение: Треугольник ABC - прямоугольный. AB,AC - катеты. Квадрат на гипотенузе BDQC AB+AC=d Достроим чертеж…
Найдите площадь треугольника, если две стороны его соответственно равны 27 и 29, а медиана, проведённая к третьей, равна 26. Решение: Пусть стороны AB и BC треугольника ABC равны соответственно 27 и 29, а его медиана BM равна 26. На продолжении…
На сторонах параллелограмма вне его построены квадраты. Докажите, что их центры также образуют квадрат. РешениеПусть O1, O2, O3, O4 — центры квадратов, построенных соответственно на сторонах AB, BC, CD, DA параллелограмма ABCD. Обозначим < BAD = ? . Рассмотрим случай, когда  ? <…
Стороны параллелограмма равны 8 и 3; биссектрисы двух углов параллелограмма, прилежащих к большей стороне, делят противолежащую сторону на 3 части. Найдите каждую из них. Решение: Пусть BK и CM — биссектрисы углов B и C параллелограмма ABCD, в котором AD…
Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны. РешениеПусть AD и BC — основания трапеции ABCD, причём AB =…
Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o Решение Пусть S — данная точка, SBD…
Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 -- на стороне BC и т.д.). Докажите, что центры обоих параллелограммов совпадают. Решение:Пусть M — точка пересечения AC и B1D1. Достаточно доказать, что M…
На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.Решение:Диагонали четырёхугольника ABDC пересекаются в точке M и делятся ею пополам, поэтому четырёхугольник ABDC — параллелограмм.
В параллелограмме ABCD точки E и F лежат соответственно на сторонах AB и BC, M — точка пересечения прямых AF и DE, причём AE = 2BE, а BF = 3CF. Найдите отношение AM : MF.Решение :Ответ:4/5
Страница 19 из 24