Литература Русский язык Английский язык Математика Информатика Физика Химия Биология География История

Геометрия (240)

В треугольнике ABC медиана AM продолжена за точку M на расстояние, равное AM. Найдите расстояние от полученной точки до вершин B и C, если AB = 4, AC = 5. РешениеПусть A1 — точка на продолжении медианы AM за точку…
На продолжении медианы AM треугольника ABC за точку M отложен отрезок MD, равный AM. Докажите, что четырёхугольник ABDC — параллелограмм.Решение:Диагонали четырёхугольника ABDC пересекаются в точке M и делятся ею пополам, поэтому четырёхугольник ABDC — параллелограмм.
Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны. Решение:Пусть AD и BC — основания трапеции ABCD, причём AB =…
Стороны параллелограмма равны 8 и 3; биссектрисы двух углов параллелограмма, прилежащих к большей стороне, делят противолежащую сторону на 3 части. Найдите каждую из них. Решение: Пусть BK и CM — биссектрисы углов B и C параллелограмма ABCD, в котором AD…
В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12. РешениеПусть вершины…
Из точки вне окружности проведены касательные и секущая, причём точки касания и точки пересечения секущей с окружностью являются вершинами некоторой трапеции. Найдите отношение оснований трапеции, если известно, что угол между касательными равен 60o Решение Пусть S — данная точка, SBD…
Точки M и N — середины соседних сторон соответственно BC и CD параллелограмма ABCD. Докажите, что прямые DM и BN пересекаются на диагонали AC. Решение:Пусть O — точка пересечения диагоналей параллелограмма ABCD. Тогда O — середина диагонали BD. Значит, CO…
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника. Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d. Решение: Треугольник ABC - прямоугольный. AB,AC - катеты. Квадрат на гипотенузе BDQC AB+AC=d Достроим чертеж…
Страница 20 из 24